Modulation of the cloned skeletal muscle L-type Ca2+ channel by anchored cAMP-dependent protein kinase.

نویسندگان

  • B D Johnson
  • J P Brousal
  • B Z Peterson
  • P A Gallombardo
  • G H Hockerman
  • Y Lai
  • T Scheuer
  • W A Catterall
چکیده

Ca2+ influx through skeletal muscle Ca2+ channels and the force of contraction are increased in response to beta-adrenergic stimulation and high-frequency electrical stimulation. These effects are thought to be mediated by cAMP-dependent phosphorylation of the skeletal muscle Ca2+ channel. Modulation of the cloned skeletal muscle Ca2+ channel by cAMP-dependent phosphorylation and by depolarizing prepulses was reconstituted by transient expression in tsA-201 cells and compared to modulation of the native skeletal muscle Ca2+ channel as expressed in mouse 129CB3 skeletal muscle cells. The heterologously expressed Ca2+ channel consisting of alpha1, alpha2delta, and beta subunits gave currents that were similar in time course, current density, and dihydropyridine sensitivity to the native Ca2+ channel. cAMP-dependent protein kinase (PKA) stimulation by Sp-5,6-DCl-cBIMPS (cBIMPS) increased currents through both native and expressed channels two- to fourfold. Tail currents after depolarizations to potentials between -20 and +80 mV increased in amplitude and decayed more slowly as either the duration or potential of the depolarization was increased. The time- and voltage-dependent slowing of channel deactivation required the activity of PKA, because it was enhanced by cBIMPS and reduced or eliminated by the peptide PKA inhibitor PKI (5-24) amide. This voltage-dependent modulation of the cloned skeletal muscle Ca2+ channel by PKA also required anchoring of PKA by A-Kinase Anchoring Proteins because it was blocked by peptide Ht 31, which disrupts such anchoring. The results show that the skeletal muscle Ca2+ channel expressed in heterologous cells is modulated by PKA at rest and during depolarization and that this modulation requires anchored protein kinase, as it does in native skeletal muscle cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Type II regulatory subunits are not required for the anchoring-dependent modulation of Ca2+ channel activity by cAMP-dependent protein kinase.

Preferential phosphorylation of specific proteins by cAMP-dependent protein kinase (PKA) may be mediated in part by the anchoring of PKA to a family of A-kinase anchor proteins (AKAPs) positioned in close proximity to target proteins. This interaction is thought to depend on binding of the type II regulatory (RII) subunits to AKAPs and is essential for PKA-dependent modulation of the alpha-amin...

متن کامل

Regulation of mouse skeletal muscle L-type Ca2+ channel by activation of the insulin-like growth factor-1 receptor.

We investigated the modulation of the skeletal muscle L-type Ca2+ channel/dihydropyridine receptor in response to insulin-like growth factor-1 receptor (IGF-1R) activation in single extensor digitorum longus muscle fibers from adult C57BL/6 mice. The L-type Ca2+ channel activity in its dual role as a voltage sensor and a selective Ca2+-conducting pore was recorded in voltage-clamp conditions. P...

متن کامل

A novel leucine zipper targets AKAP15 and cyclic AMP-dependent protein kinase to the C terminus of the skeletal muscle Ca2+ channel and modulates its function.

In skeletal muscle, voltage-dependent potentiation of L-type Ca(2+) channel (Ca(V)1.1) activity requires phosphorylation by cyclic AMP-dependent protein kinase (PKA) anchored via an A kinase-anchoring protein (AKAP15). However, the mechanism by which AKAP15 targets PKA to L-type Ca(2+) channels has not been elucidated. Here we report that AKAP15 directly interacts with the C-terminal domain of ...

متن کامل

A novel lipid-anchored A-kinase Anchoring Protein facilitates cAMP-responsive membrane events.

Compartmentalization of protein kinases with substrates is a mechanism that may promote specificity of intracellular phosphorylation events. We have cloned a low-molecular weight A-kinase Anchoring Protein, called AKAP18, which targets the cAMP-dependent protein kinase (PKA) to the plasma membrane, and permits functional coupling to the L-type calcium channel. Membrane anchoring is mediated by ...

متن کامل

Primary Structure and Function of an A Kinase Anchoring Protein Associated with Calcium Channels

Rapid, voltage-dependent potentiation of skeletal muscle L-type calcium channels requires phosphorylation by cAMP-dependent protein kinase (PKA) anchored via an A kinase anchoring protein (AKAP). Here we report the isolation, primary sequence determination, and functional characterization of AKAP15, a lipid-anchored protein of 81 amino acid residues with a single amphipathic helix that binds PK...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 17 4  شماره 

صفحات  -

تاریخ انتشار 1997